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1. Introduction

This work concerns the maximum likelihood estimation method, which is widely used in statistics
and, under regularity conditions frequently satisfied in useful models, produces asymptotically
efficient estimators (Severini, 2000, Shao, 1999, Lehmann and Casella 1998, Azzalini, 1996). The
starting point is a sequence {X;} of independent and identically distributed (#id) random objects
whose common distribution is absolutely continuous with respect to a given measure, and the
corresponding density is not completely specified but depends on an unknown parameter 6. In
this context, the most basic and desirable asymptotic property of an estimation scheme for 6 is
its comsistency which, roughly, requires the convergence of the generated estimators to the true
parameter value as the sample size increases; see Definition 2.1 below. In this direction, it was
shown by Bahadur (1958) that the maximum likelihood procedure is not necessarily consistent
(see also Lehmann and Casella, 1998, p. 445-447), and this fact provides the motivation for the
main problem considered in this note: To determine a necessary and sufficient criterion for the
consistency of the maximum likelihood estimation method.

The above problem is being analyzed, essentially, under three types of assumptions presented
formally in the following sections: First, it is supposed that the parameter space © is a locally
compact metric space, a weak requirement that is satisfied, for instance, when © is an Euclidean
space IR*. Next, it is assumed that the unknown density of the X;’s depends continuously,
in a certain sense, on the parameter § € ©; as usual, the discrepancy between two densities is
measured in the logarithmic scale, but it is not supposed that densities corresponding to different
parameters have the same support. Finally, it is assumed that, with probability 1, the maximum
likelihood estimator is well-defined when the sample size is large enough. In this framework, the
main result of the paper, stated as Theorem 4.1 in Section 4, can be roughly described as follows:

*

This work was supported in part by the PSF Organization under Grant No. 2006-1, and by
CONACYT-México under Grant 45974-F.



e A sequence {f,} of maximum likelihood estimators is consistent if, and only if, there exists a
compact set that, with probability 1, contains 6,, for all n sufficiently large.

When this result is applied to the case © = IR¥, the following simple characterization is obtained
in Corollary 4.1:

e A sequence of (symmetric) maximum likelihood estimators is consistent if and only if the
sequence is bounded almost surely.

This latter result is a remarkable property of the maximum likelihood estimation method, since an
arbitrary bounded sequence in an Euclidean space is not necessarily convergent. The arguments
used in the this paper rely heavily on two basic facts, namely, (i) the strong law of large numbers
for random variables whose expectation is not necessarily finite (Ash 1972, p. 277, or Billingsley
1995, p. 284), and (ii) the Hewitt-Savage zero-one law for symmetric events (Ash 1972, p. 279,
Billingsley 1995, p. 496).

The organization of the paper is as follows: First, in Section 2 the statistical model is intro-
duced, and the basic structural assumptions are formally stated. Next, the maximum likelihood
estimation procedure is briefly discussed in Section 3, and a zero-one law is established for the
existence of maximum likelihood estimators 6, for large samples. Then, in Section 4 the criteria
for the consistency of {én} are established; the argument in this part uses a technical tool stated
as Theorem 4.2, and the exposition concludes in Section 5 with a proof of this result.

Notation. For a measurable space (5,G) and n = 1,2,3,..., S™ denotes the n-fold cartesian
product of S with itself, whereas G” is the o-field generated by the sets By x By X - -+ X B,, with
B; € G for i =1,2,...,n. Similarly, S consists of all sequences

X = (1‘1,.172,563...)

with z; € S for all i, and G* stands for the o-field generated by the cylinders B x §°°, where
B € G" for some n. On the other hand, for a positive integer m, P,, denotes the class of all
permutations of {1,2,...,m}, and for each x € §*,

XT:(IT(I)va(Q)v"'7xT(m)7:Cm+17xm+27"')7 TEPm, m:172a35"" (11)

2. Statistical Model

Let Xy, Xo, X3,... be iid random objects defined on the probability space (Q, F, P) and taking
values on the measurable space (5,G). The common distribution of the X;’s is the measure Px
on G defined by

Px[B]=P[X; € B], Beg. (2.1)

Assumption 2.1. There exists a (o-finite) measure v on (5, G) such that Px is absolutely contin-
uous with respect to v, i.e., for some (density) function fx:S — [0, 0),

Px[B] = /B fx(x)v(dz), Beg. (2.2)

Measure Px—or, equivalently, density fx—contains all probabilistic information about the
sequence {X;}. However, in practice fx is not completely known, and the statistical problem
consists in using the observed values of X7, X5, X3,...—the data—to approximate the unknown
density fx. Hereafter, it is supposed that a priori knowledge about the physical process generat-
ing the observations allows to postulate that fx belongs to a certain restricted class of densities
IF'; the assertion

fxelF (2.3)
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is a statistical model, and in this work it is assumed that the members of IF' can be indexed by
the elements of a metric space 0, i.e.,

F ={f(z;0):0 € 6} (2.4)

where, for each 6 € ©, the G-measurable function f(+;6):S — [0,00) is a density function with
respect to v; in this case (2.3) is a parametric model and © is referred to as the parameter space.
The parametrization 6 — f(-;0) from © onto IF is supposed to be injective.

Assumption 2.2. For 0,6 € © with 6 #£ 6/,

vle: f(2;0) # f(a;0)] > .

Under the assumption that f(-;6) = fx(-), the common distribution Py of the X;’s is given
by

Py[B] = /B f(z;0)v(dz), Beg (2.5)

(see (2.1) and (2.2)); the distribution of the whole process X = (X7, X, X3,...) is denoted by
Py and Fy[-] stands for the corresponding expectation operator. Notice that

PQZPQX]BQX“-, (26)

is the countable product of measure Py with itself. The (unknown) parameter §* € © for which
fx() = f(-;6%) is the true parameter value, and the problem of looking for fx in family IF,
is the same as searching for §* within ©. In general, based on a finite number of observations
X1, Xs,...,X,, it is not possible to determine 6* exactly, and the given data must be used to
construct an estimator én(X 1, X9,...,X,) whose values are used as approximations of 6*.

Definition 2.1. The sequence {én = én(Xh Xo,...,Xn)} of estimators of 0—or the method used
to build it—is consistent if

T

[n énze}zL fco.

n— 00

In the following sections the maximum likelihood method of estimation is studied, and
necessary and sufficient conditions are given for its consistency. The discussion assumes the that
the following mild topological and continuity conditions hold.

Assumption 2.3. The parameter space O is a locally compact metric space.

Next, for each 6 € © define the support Sy of density f(-;6) by
Sop={z € S: f(z;0) > 0} (2.7)
whereas, for ¢ > 0 and 6, € S, the e-discrepancy function of family {f(-;0)} at 6; is given by

f(z,0)
f($,91)

D.g (x)= sup log < > Iz € SyNSy,], x€S, (2.8)

0:d(0,01)<e
where d(-,-) is the metric in ©.

Assumption 2.4. (a) For each € > 0 and 0,6, € ©
(i) D:el(x) = max{0, D. g, (x)} is G-measurable, and

(Xl)} —0ase\,0.

£,601

(i) By [D*



(b) Given 6y and 0, € ©, if v[Sp, N S§ | > 0 then there exists B € G and € > 0 such that
(i) v[B] > 0, and
(ii) B C Sy, NSy when d(61,0) < e.

Remark 2.1. (a) Assume that there exists a set {p1,p2,...} dense in © with the following
property, which is valid in all useful models.

A: For each x € S and 6 € O, a subsequence {p,,} can be found satisfying p,, — € and
£ puy) — £(2,0) a5 & — oo,

In this case the supremum in (2.8) can be taken over the p;’s satisfying d(py, 61) < e—a countable
set— and then function D, g, (-) is G-measurable.

(b) In certain sense, part (b) in Assumption 2.4 guarantees that the supports Sy do no experiment
a ‘sudden’ growth as # — #;. When S = IR* endowed with the Euclidean norm, and v(-) is the
corresponding Lebesgue measure, suppose that

SH = {(1’1,...,$k)1(li(0) <r < bl(e)’ i= 172a"'7k}

for certain mappings a;(-),b;(-):© — IR. In this case Assumption 2.4(b) holds if, for every
1=1,2,...,k, a;(+) is lower semi-continuous and b;(-) is upper semi-continuous.

3. Maximum Likelihood Estimation

Given a positive integer n and points z1, 9, ...,z, € 5, the likelihood function associated to the
event

[X1:£U1,X2:332,...,Xn:l‘n], (31)
denoted by Ly, (-; 21,22, ...,2,):© — [0,00), is defined by

n

Ln(H;xl,xg,...,xn)=Hf(a:i;9), 0eo. (3.2)

i=1
Notice that the likelihoods satisfy
Lp(s21,m0,. 0 ,80) = Lo (527(1), Tr2)s -1 Tr(n))y T € P, (3.3)
so that, defining the set M,, by
M, = [(z1,22,...,2,) € S™: Ly(:; 21, 22, ..., T,) has a maximizer], (3.4)
it follows that M, is symmetric, i.e.,
(1, 22,...,2n) € My <= (T71),T7(2) -+ Tr(n)) € My, T € Pn. (3.5)

After observing (3.1), the maximum likelihood method consists in estimating 6 by a maximizer

O(x1, o, ..., xy) of Ly(:;21, o, ..., x,) whenever such a point exists, so that
Ln(é(an,xg,...,xn);xl,xg,...,xn) (3.6)
> Ln(0;21,22,...,2,), 0€0O, (x1,22,...,2,) € M, )
whereas én(xl, Ta,...,%n) is defined ‘arbitrily’ if L, (-; 21,22, ...,2,) does not achieve its maxi-
mum, say R
O0(x1,29,...,xn) =04, (21,...,2,) & M, (3.7)

where 0, is a fixed member of ©. On the other hand, 6,,(-) must be a measurable function of
(z1,22,...,2,) to ensure that 0,, (X1, Xo, ..., X, ) is a valid estimator, and this requires additional
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conditions on the mapping (x,0) — f(z;6). Instead of digging into measurability topics, here
it is simply assumed that M, belongs to G", and that 0, (x1,x2,...,x,) is a G"-measurable

function. In these circumstances 6, = é(Xl, Xo, ..., X,) is a maximum likelihood estimator of
0 based on X, Xo,...,X,,. Next, let 6,(X1,Xs,...,X,) be an arbitrary maximum likelihood
estimator and define

On(X1, X2, .., Xn) = 00 (X (1), X(2) - X(m)

where the X(;)’s are the order statistics of sample X1, X»,..., X,. In this case, form (3.3)-(3.7)
it follows that 6, is also a maximum likelihood estimator which is symmetric, i.e.,

on(XlaXQa'“aXn) :én(X'r(l)aX'r(Q)a"'7X‘r(n))7 T Gpn; (38)

all ‘good’ estimators have this property. Observe now that, since én() is defined arbitrarily on
M, the essential characteristic of a maximum likelihood estimate is inequality (3.6), making it
interesting to investigate if the inclusion (z1,za,...,2,) € M, occurs, with probability one, for
n large enough; the main conclusion in this direction is the zero-one result in Lemma 2.1 below,
whose statement uses the following notation: For x = (21, z2,23...) € S and a positive integer
n, set

x" = (21,22, .., Tn), (3.9)

and let M/ the set of trajectories x € S such that, after observing X1, X, ..., X,, the corre-
sponding likelihood L,, achieves its maximum. More precisely,

M =[x e S*:x" € M,] = M, x S*. (3.10)

With this notation, ﬂﬁzk M consists of all trajectories x € S° along which the likelihood
corresponding to the first m observations attains its maximum for all m > k, and then

M* = G ﬁ M, (3.11)
k=1 m=k

is the class of all trajectories x for which the likelihoods L,,(-;x™) have maximizers when m is
large enough; in the terminology of Billingsley (1995), or Shao (1999), M* is the limit inferior of
the events M.

Lemma 3.1. For each 0 € O,
Py[M*] =0 or Py[M*]=1.
Proof. Let 6 € © be arbitrary but fixed, and assume that 6 € © is the true parameter value, so
that Py is the distribution of X = (X7, Xs,...), and then
Py[M*] = P[X € M*]. (3.12)

Let the positive integer m and 7 € P, be arbitrary, and observe that, with the notation in (1.1),
for each t > m, (3.4), (3.5) and (3.10) together yield the following result: x € M| <— x, € M].

Therefore,
o0 o0 oo o0
xe |J M = x.€ ] (M
k=m t=k k=mt=k

On the other hand, observing that (2, M{ C (,Z, M{ for k < ki, it follows from (3.11) that
M* = Uzo:m ﬂ:i « M/; consequently, since the positive integer m and 7 € P, are arbitrary, the
above display yields that

xeEM" < x, e M*, 7€P,, m=123 ..., (3.13)
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i.e., M* is symmetric. Recalling that the X;’s are iid, the Hewitt-Savage zero-one law for
symmetric events yields that P[X € M*] =1 or P[X € M] = 0 (Ash 1972, Billingsley 1995),
and then Pyp[M*] =0 or Py[M*] =1, by (3.12). a

Since én(Xl,...,Xn) is arbitrary when (X1,Xs,...,X,) € M,, it is clear that a good
asymptotic behavior of {én} can be expected only when Py[M*] = 1, This requirement holds for
all the models usually considered in applications, and in general, can be guaranteed by imposing
conditions like continuity of the mapping 6 — f(z;60) for each z € S and (i) compactness of ©,
or (ii) supgeen i, f(2;60) — 0 as i — oo, where © = [JZ; K; and each set K; is compact. Instead
of giving explicit conditions to ensure that Py[M*] = 1, it is simply supposed that this equality
holds for every 6 € ©.

Assumption 3.1. M,, € G" for n =1,2,3,..., and Py[M*] =1 for each § € ©.

4. Necessary and Sufficient Conditions for Consistency

This section analyzes the consistency of a sequence of maximum likelihood estimators. As it is
shown by the following simple example, under the assumptions in this work consistency of the
maximum likelihood method does not necessarily hold.

Example 4.1. Let the parameter space be © = {0,1,2,3,...} endowed with the discrete metric,

and let p(x) be a density on the real line such that ¢(x) > 0 for every z € IR = S. Set
f(x;0) = p(z) and for k =1,2,3,...

k
flz; k) = MI[x € [—k,k]], where ¢ :/ p(z)dz.

Ck —k
In this context, the assumptions in the previous sections hold and, for each z1,zs,..., 2, € IR,
the likelihood function L, (-;x1,3a,...,x,) achieves its maximum at the single point

On(x1,y ..., 2n) =min{k € O: |z;| <k, i =1,2,...,n},

and it is not difficult to see that 6, — oo with probability 1 with respect to Py. Therefore, the
condition §,, — 0 Py-almost surely fails, and then {én} is not a consistent sequence; see Definition
2.1. (In Lehmann and Casella (1998, p.445) a more sofisticated example is presented for which
the convergence 0,, — 6 Py-almost surely fails for every 6 € ©.) 4

The following theorem provides necessary and sufficient conditions for the consistency of a
sequence of maximum likelihood estimators.

Theorem 4.1. Suppose that Assumptions 2.1-2.4 as well as Assumption 3.1 hold, and let {én =

0, (X1, Xa,...,Xn)} be a sequence of mazimum likelihood estimators. In this case, the following
assertions (a) and (b) are equivalent:

(a) {0} is a consistent sequence of estimators of 0; see Definition 2.1.

(b) For each 0 € ©, there exists a compact set Cy C O such that, with probability 1 with respect
to Py, 6, belongs to Cy for n large enough. More precisely,

Py G ﬁ [0, € cg]] =1, fce. (4.1)
k=1r=k

As it is shown in the following corollary, Theorem 4.1 renders a simple characterization of
consistency for models with © = R”.



Corollary 4.1. Suppose that © = IR* endowed with the Euclidean norm ||-||, and that Assumptions
2.1, 2.2, 2.4 and 3.1 hold. Let {0,} be a sequence of mazimum likelihood estimators satisfying
the symmetry condition (3.8). In this case, {0,} is consistent if and only if

Py |limsup ||6,] < co| =1, 6 € O. (4.2)

n—oo

According to this corollary, a sequence {én} of symmetric maximum likelihood estimators is
consistent if and only if, with probability 1 with respect to each distribution Py, {6, } is bounded.
This characterization is an interesting property of the maximum likelihood method, particulary
when recalling that a general bounded sequence in R* is not necessarily convergent.

Proof of Corollary 4.1. If {f,,} is consistent, (4.2) follows from the inclusions

lim 0, = 9} c {hmsup”énﬂ < ||9||} c [nmsupnénn < oo] .

|:TL—>OO

Now, suppose that (4.2) holds and let # € © be arbitrary but fixed. For each integer k, define
the event

By, = [x € §%:limsup [|0,(x")|| < k] , (4.3)

n—oo

so that (Jyo, B = {lim sup,, . [10n] < oo}, and the equality in (4.2) yield that there exists an

integer k(#) such that
Py [By(o)] > 0. (4.4)

On the other hand, from (4.3) and (3.8) it follows that each set By is symmetric, i.e., if x € By,
then x, C By, for each 7 € P, and m =1,2,3,... (see (1.1)), so that, as in the proof of Lemma
3.1, the Hewitt-Savage zero-one law yields that Py[By] = 0 or Py[By] = 1, and then

Py[Byoy] = 1, (4.5)

by (4.4). To continue, notice that (4.3) yields that if x € By then there exists an integer
N(x) such that ||6,(x™)|| < k(6) + 1 for n > n(x), i.e., x € ﬂf:N(x)[HénH < k(@) +1] C
Uiozl ﬂf:r[”enu < k(a) + 1}’ that iS,

Bk(g) - U ﬂ [én S 09],

r=1n=r

where Cj is the compact ball {# € IR*:||0|| < k(0) + 1}; thus,

Py U ﬂ |:én609:| :1,
r=1n=r
by (4.5). Since 6 € © is arbitrary, it follows that {,,} is consistent, by Theorem 4.1. O

The proof of Theorem 4.1 relies on the following technical tool, which will be verified in the
following section.

Theorem 4.2. Assume that the conditions in Theorem 4.1 hold, let 8g € © be arbitrary but fixed,
and let K C © be a compact set such that 0y & K. In this context, there exists Ux € G with
the following properties (a) and (b):



(a) Py, U] =1;
(b) For each x € Uk, én(xn) does not belong to K for n large enough. More precisely, there
exists a function Ni:Uxg — {1,2,3,...} such that

0,(x") ¢ K, xelyg, n>Ng(x). (4.6)

Proof of Theorem 4.1. Assume that the sequence {0, } is consistent. Let § € © be arbitrary but
fixed, and select €9 > 0 such that the closed ball Cy = {0’ € ©:d(¢',0) < ep} is compact; see
Assumption 2.3. Observing that

io=d e oz -0 <]

the consistency of {6, } yields (4.1).

Assume that (4.1) holds, where each set Cy is compact. In this case let 8y € © be arbitrary but
fixed, and observe the following facts (a)—(c):

(a) Ifx € Uge; Moy [én € Cgo}, there exists k(x) such that x € (1,2, [én € 090]7 i.e.,

0,(x™) € Cy,, n > k(x).

(b) Given € > 0, let B(6y,e) = {0’ € ©:d(0’,6p) < £} be the open ball with center §; and radius
e > 0, and define the set K = Cp, N B(6y, )¢, so that K is compact, 6y ¢ K, and

090 =KU (090 N B(e()ae))'

(c) Since 0y € K, by Theorem 4.2 there exists an event Uy € B(S®) with Py, [Ux] = 1, as well
as a function Ny (-):Ux — {1,2,3,...} satisfying that, for each x € Uy,

0,(x") € K, n> Ng(x);

see (4.6).
Setting N(x) = max{k(x), Nk(x)}, (a)—(c) together yield

x € Uy N (G ﬁ [én € CQOD — 0,(x) € Gy, N B(0o,€)), n> N(x)

k=1n=k
—xe [én e B(amg)] , n>N(x)

oo

=xe () {d(én,ao) < s] ,
n=N ()

so that

u,m([j N [anec%D < U 1) a0 <

k=1n=k =

and then Py, {UZ‘;l Noes [d(én, bo) < a” = 1. Since this latter equality holds for every ¢ > 0,
it follows that Py, {lim 0, = 00} = 1 (Billingsley, 1995, p. 70), and then {f,} is a consistent

sequence of estimators of 0, since 6y € © is arbitrary. O
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5. Proof of Theorem 4.2

Throughout the remainder 8y € © is arbitrary but fixed, the assumptions in Sections 2 and 3 are
supposed to hold without explicit reference, and {én} is a given sequence of maximum likelihood
estimators of 6. As usual, instead of analyzing functions L, (-;x™) directly, it is convenient to
consider its normalized logarithm

1 1<
L,(0;x") = —log (Ly(6;x™)) = —» 1 i 0), 0¢€0, 5.1
0x) = g (1a0:X) = 1 Y ol 0. 0 (5.1)
where the convention log(0) = —oco is enforced; since log(+) is strictly increasing on [0, 00), (3.6)
is equivalent to X
Lo(0(x");x™) > Ly(6;x™), 6€0O, x"eM,. (5.2)

The proof of Theorem 4.2 is based on the following technical result.

Theorem 5.1. Given 61 € © with 01 # 0y, there exist positive numbers €(61) and A(0y1), as well

as an event Up, € G and a function Ng,:Uy, — {1,2,3,...} such that the following properties
(a) and (b) hold:

((l) Z/[gl C Sgg’ and P90 [Z/[@l] =1;
(b) For each x € Uy,

Ln(0;x") < L,(00;x") — A(b1), if n> Ny, (x) and d(6,601) <e(f).

The argument used below to establish this result relies on the following consequence of
Jensen’s inequality.
Lemma 5.1. If 61 € ©\ {00} and v(Sg, N S§ ) =0, then assertions (a) and (b) below occur.
(a) The following inequality holds:

Eay 1ox (T30 )| <o (53)

where the expectation may be —oo.
(b) There ezist positive numbers A(61) and €(01) such that

f(Xq;61)

Eq, {D:,al (X1) + log <f(X1;90)

ﬂ < A0, if 0<e<e(0)

Proof. (a) Since v(Sp, N S§ ) = 0, via (2.5) and (2.7) it follows that

1= Py, [Se,] = ; f(x;@o)u(dx):/s N f(x;600) v(dx) = Pa, [Sp, N Se, ] (5.4)
and
F(X1;00)\] o f(z;61) 2 00) v(da
o ot (T )| = L, 2 () 200 00 o

Assume now that f(x;601)/f(x;600) is not constant v-almost everywhere on Sp, N Sp,. In this
case, using the strict concavity of log(-), (5.3) follows from the two displays above via Jensen’s
inequality. To conclude, it is sufficient to show that (5.3) holds when, for some ¢ € [0, ),

f(x;01)/f(z;60p) = ¢ v-almost everywhere on Sg, N Sp, . (5.6)
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In this case, since f(-;61) is a density,

1= f(z;01)v(dz) > /S

Se,

f(z;00)v(dx) = C/S s f(z;00)v(dz) = c,

00 M5S0,

where (5.4) was used to set the last equality. From (5.5) it is clear that (5.3) will follow if it is
shown that ¢ < 1, inequality that will be now established Assume that ¢ = 1, so that the above
displayed relation yields 1 = fSeoﬂSel fx;01)v sz (x;01)v(dx); since f(-;01) is positive
on Sp,, it follows that

v [S(-)l N 5‘98] =0

and, moreover, via (5.6), equality ¢ = 1 yields

v([w: f(z;01) # f(;600)] 0 (Se, OS] =

Observing that [z: f(x;01) # f(x;60)] C Se, U Se,, the condition v [590 n 551] = 0 and the last
two displays together yield v [x: f(x;601) # f(2;6p)] = 0, contradicting Assumption 2.2, since
01 # 0y. Therefore, ¢ < 1 and the proof of part (a) is complete.

(b) Using part (a), select A(f1) > 0 such that Ep, [log (f(X1;601)/f(X1;00))] < —3A(61). By
Assumption 2.4(b) there exists £(6;) > 0 such that Ep, {D:el (Xl)} < A(6y) for € € (0,e(61)],
and part (b) follows. ]

The following simple result involving the discrepancy function in (2.8) will be useful.

Lemma 5.2. Let 6, € O\ {0o} be arbitrary but fixed. For every x € Sp, NSy, and € >0

g (7(0:0)) < D2y, o) + o (LGS ) +lox (fwstn)) i d0.6) <= ()

Proof. Let © € Sy, N Sy, be arbitrary, so that f(x;01)f(x;600) > 0. Firstly, notice that (5.7)
is valid when = ¢ Sy, since the left hand side is —oo. Next, assume that x € Sy, so that
I[x € SyN Sy, ] = 1. From f(x;0) = [f(x;0)/f(x;01)] [f(x;01)/f(x;00)] f(x;00) it follows that

g (7(0:0)) = log (L0 ) 1o (R0 ) -+ 1og (160

0
= log f(x: ) T 0 ! 0 z;
= 1ox (i) Tl € 501l 1o (T ) + o)
and, via (2.8), this yields (5.7).

Proof of Theorem 5.1. The argument is divided in two cases according to the value of v[Sp, NS |.
Case 1: v[Sp, N S5 ] =0
To start with, notice that (2.5) and (2.7) yield that 1 = Py, [Sg,] = Py, [Se, N Se,], so that

Poy [(Sao M Sp,)™] =1 (5.8)

see (2.6). Next, let A(6;) and £(61) be as in Lemma 5.1(b), and define M as the class of all
trajectories x = (z1,x2,3,...) € S such that

Jm (Z D005 Zlog( D)
f

- [ 000+ 108 (200 3
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Therefore,
Py, [M] =1, (5.9)

by the strong law of large numbers, and there exists Ny, (-): M — {1,2,3,...} such that
1 (¢ & f(xi; 01)
- (2 Dl 0, (x:) + z;log (M < —A(6y), x€M, n>Ng(x). (5.10)
1= 1=
On the other hand, for x € (Sg, N Sy, )™, it follows that x; € Sp, N Sp, for each i, so that

f(xi;01)

log (f(2::0)) = D:(f)l)ﬁl (ws) + log (f(xz, 6o)

) +log (f(zi;6p)) if d(6,61) <e(6:),

by Lemma 5.2, and then (see (5.1))

1 (<& - flxi;61)
L") < + . )
En(eax ) =0 <;_1: D6(01),91 (ZL’z) ;:1 log <f($1,90)>> »Cn(QOaX )
if x € (Sp, NSp,)” and d(6,01) < e(61)

Setting Uy, = (Sg, N Se, )™ N M, part (a) in Theorem 5.1 follows from (5.8) and (5.9), whereas
part (b) follows combining the above relation and (5.10).
Case 2: v[Sp, N S5 ] > 0.

In this framework, Assumption 2.4(b) allows to select €(f1) > 0 and B € G such that v[B] > 0
and
B C Sg, NS§ when d(8,0:1) < e(61). (5.11)

Since f(+;6p) is positive on Sy, it follows that

Py, [B] :/Bf(:v;eo)z/(dx) =0

and defining

0o, 13 1 = D
Up, = |x € S5 lim — ;1[:@ € B] = Py, [B]
the strong law of large number yields that Py,[Up,] = 1, so that Uy, satisfies the conclusions

in part (a) of Theorem 5.1. To conclude, part (b) of Theorem 5.1 will be verified. Define
N01:u91 - {1, 2,3, e } by

Ny, (x) = min{i: z; € B}, x €Uy,
and notice that Ny, (-) is always finite, since Py,[B] > 0. For x € Uy, and n > Ny, (x) there exists
a positive integer i < n such that x; € B; in fact, ¢ = Np, (x) is such an integer. In this case
f(zi;0) =01if d(6,01) < €(61), by (5.11) and (2.7), and then
L,(0;x") = —00, n> Ny (x), d0,01)<e(01), x€Uy;

see (5.1) and recall the convention log(0) = —oo. On the other hand, observe that x; € Sy, for
all ¢ when x € Up,, and in this case f(z;;600) > 0, so that £,,(0p;x") € IR, by (5.1), and then

Ln(0;x™) < L,(00;%x") —1, n> Np (x), d6,01)<e(b1), x€Uy,,
completing the proof. 0O
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Proof of Theorem 4.2. Let K be an arbitrary compact subset of © such that 6 € © N K€. For
each 0" € K, Theorem 5.1 yields the existence of positive numbers e(6’) and A(0’) as well as an
event Up: € G and a function Ny:Uy — {1,2,3,...} such that

Uy C Sg;’, Py, [Ue/] =1, (5.12)
and
Ln(0;x") < L,(00;x") — A(0), x€Uy, n>Np(x), 0B () (5.13)

where, as before, B(#’,¢(6")) is the open ball in © with center ¢’ and radius €(6’). Observing that
K CUpecg B(#,6(8)), the compactness of K yields that for a finite set {01,602,...,0,} C K

K c | B(0;,£(6:)). (5.14)
i=1
Setting
ZJK = ﬂuew
i=1
Ni(x) = max{Ny, (x), Ng, (x), ..., Np (x)}
and

Ag = min{A(61),A(b2),...,A(0,)} >0,
(5.12) yields that } y
U C S5, and Py, U] =1, (5.15)
whereas (5.13) and (5.14) together imply that

L,(0;x") < Ln(00;x™) — Ag, x€Ux, n>Ng(x), 0ckK. (5.16)

On the other hand, from the definition of M*, there exists a function N: M* — {1,2,3,...} such
that if x € M* then x™ € M,, for n > N(x); see (3.10) and (3.11). Combining this latter fact
with (5.2), it follows that

Ln(0(x™);x") > L,(0;x"), xeM*, n>N(x), 0¢c0. (5.17)
To conclude, set Ui = Ux N M*. With this notation Assumption 3.1 and (5.15) yield that
Uk C S50 and Py, [Ur] = 1, whereas setting N (x) = max{ Nk (x), N(x)} for x € U, and using

that Ax > 0, relations (5.16) and (5.17) yield that 6, (x") & K for x € Uy and n > Ng(x),
completing the proof. O
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